PHYSICAL REVIEW E

VOLUME 52, NUMBER 4

OCTOBER 1995

Free thermal convection driven by nonlocal effects
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We quantify a convective phenomenon (thermal slip) that cannot be classified either as a hydro-
dynamics instability nor as a macroscopically forced convection. Two complementary arguments
show that the velocity field by a nonuniform thermalizing wall is proportional to the ratio between

the heat flux and the pressure.
dynamics simulations.

PACS number(s): 05.20.Dd, 47.27.Te, 51.10.+y

Free thermal convection—driven by buoyancy or by
surface tension—is a perfectly well understood and fa-
miliar phenomenon derivable from Navier-Stokes (NS)
equations [1,2]. Simulations of free thermal convection
by means of molecular dynamics (MD) techniques can
be achieved with systems with as few as 103 particles
and already these small systems exhibit hydrodynamic
behavior as seen, for example, in [3-7]. Moreover MD
is useful in studying fluid phenomena at the microscopic
level without having to make assumptions concealed be-
hind the NS equations such as the Fourier law, Newton’s
law of viscosity, and local thermodynamic equilibrium.

Rarefied gases present a variety of phenomena near
the walls of the container [8,9]. When they are correctly
described in terms of hydrodynamic fields they can be
used as boundary conditions (BC) to solve Navier Stokes
equations.

For a nonuniform thermalizing wall there exists a phe-
nomenon known as thermal slip: the gas is forced to move
tangential to the wall. As we shall see this phenomenon
is related to the variation of the temperature field in one
mean free path £ through the Knudsen number ¢VT/T.
This number can be interpreted as a measure of how far
from local thermal equilibrium the system is at a given
point. The mechanism can be sketched as follows: the
particles that approach a point P of the wall come from
an anisotropic distribution while the particles that hit
the wall at P come back to the system with a distri-
bution that is isotropic or at least less anisotropic than
the incoming flux. A careful assessment of the difference
between the incoming and outgoing fluxes at P yields
the conclusion that there is a net mass flux parallel to
the wall. This phenomenon implies a particular type of
macroscopic BC.

We have observed this phenomenon in MD simulations.
In the following we are going to derive the explicit form
for this velocity field by the wall which, as we will see,
coincides with what we observe in our simulations.

We have made MD simulations of a two dimensional
gas of hard disks in a square box using our own effi-
cient algorithm [10] and the carefully devised measure-
ment routines described in [11]. Each numerical experi-
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This prediction is quantitatively corroborated by our molecular

ence consisted of two runs: (1) The system with periodic
vertical walls was subjected to a vertical temperature dif-
ference, relaxed for 200 thermal diffusion times ¢7, and
then the temperature profile T'(z) was carefully measured
for another 200tr. (2) A second simulation was run un-
der the same conditions as in (1) except that the periodic
(vertical) walls were replaced by new walls: each particle
hitting them returns to the system with a velocity taken
from a heat bath at the local temperature T'(z). The sign
of the vertical component of this velocity was random and
therefore microscopically it is a nonslip BC in the sense
that the emerging particles do not remember the velocity
with which they came. In our main simulations the parti-
cles hitting anyone of the thermalizing walls emerged on
the opposite one (cylindrical topology) to reduce bound-
ary effects even though this feature does not affect the
appearence of the phenomenon we are reporting. Again
the system was relaxed for 200t7 and then measurements
were averaged in time during the next 600¢{7. The mea-
surements were done dividing the system in square cells.
Densities and the velocity field were measured in every
cell and fluxes were measured across the cell walls.

Units are chosen such that particle’s mass and diame-
ter, the Boltzmann constant, and the temperature at the
bottom m, D, kg, and T3, respectively, are fixed to unity.
With this particular choice of units the lengths are in di-
ameter units, the temperature in energy units, and the
time in units of /mD2/kpT;. The control parameters of
each simulation are the number of particles IV, the bulk
number density np, and the temperature at the top T}
where Ty <T}.

Our main simulation considered a system of N =1444
hard disks, bulk number density ng = 0.05, implying a
box side of 170 and a mean free path of about 7 and at
the top the temperature was fixed to be T; =0.1.

The main observation is the following: a convective
current stabilizes in the neighborhood of the vertical
walls moving towards the warmer zone. In Figs. 1 and 2
it is possible to see the velocity field ¥ and the mass flux
mnv. At the bottom the convective current necessarily
bends towards the center to come up along the central
part of the box. Since the gas is highly compressible the
eye of the convective rolls are far from the expanded hot-
ter zone. The velocity component v, in the cells by the
vertical walls is almost constant (even though the den-

4533 ©1995 The American Physical Society



4534
Tt

deoEEEa a4 2DDDDD Y
Jeeewecananrtrraaaaswy
L ¢ o v 838020222«
Ls vt pres -3y
Ly reg0tfter - -2d
Lyv-s2gofeas-d
Idss - 220 0§0883 24
LAy v e 222 gq808 vy
%bgn-voﬁgggqq«-:aﬁ

Yy - 24 e8¢ 4

T@) [y3ss--272¢9cas-«a8l T2
L8820 00088942884
438220098888 vvedd
4388y -2228888R88evddd
$ L3 vaasrppfRRIIN-eredd
L s 22223 8R8neeedd
I Y Yv 2222 1383380 cevdd
} YDA L L R RESEGEELRY
eI D D . e eEEEEE .
Ty

FIG. 1. Velocity field measured using MD simulations.
The horizontal walls are kept at a uniform temperature, the
warmer wall is at the bottom, and the vertical walls have a
different temperature at each point. The number of parti-
cles, the bulk number density, and the top temperature were
N = 1444, np = 0.05, and T; = 0.1, respectively.

sity varies by a factor of 10 from top to bottom) and its
average was

v, = —0.015 £ 0.002 (observed) (1)

after excluding ten cells in the upper and lower extremes
and with 76 x 76 the total number of cells.

Thermal slip was observed in all the other situations
we simulated: (i) np = 0.01, N = 8100, T, = 1.0, and
T, = 0.01; (i) ng = 0.25, N = 1444, T, = 1.0, and
T: = 0.1. The velocity component v, measured near the
vertical walls in (i) was v, = 0.014 & 0.003 and it shows
the same behavior as the preceding simulation. The ver-
tical component of the velocity in (ii), however, is no
longer constant, it increases with height. The theoreti-
cal derivations that we make below are not applicable to
this denser case but it is interesting to observe that the
phenomenon still exists.

Finally we made another simulation in which the tem-
perature profile of the thermalizing wall was not the one
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FIG. 2. Mass flux measured in the same simulation shown
in the previous figure.
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obtained from a first run but rather T'(z) was chosen ar-
bitrarily to be a smooth monotonic profile. In this case
we used ng = 0.05, N = 1444, and T; = 0.1. Again a
convective current was created with similar characteris-
tics to the previous ones. This result and the theoretical
calculations below illustrate that in order to obtain this
convective motion it is enough to have a temperature gra-
dient parallel to a thermalizing wall so that each particle
emerging from the wall comes from a (at least partially)
thermalized distribution.

To derive the correct macroscopic BC one should solve
the corresponding Boltzmann equation. Instead, in what
follows we give two heuristic and complementary deriva-
tions for a rarefied two dimensional hard disk gas one
based on local nonequilibrium distribution functions and
the other one based on the mean free path theory of
transport. Both derivations yield essentially the same
prediction for the velocity field near the vertical ther-
malizing wall. What the calculations below imply is that
the vertical wall exerts an effective tangential force on
the gas such that a velocity field — proportional to the
ratio between the heat flux and the pressure — pointing
against the heat flux is established.

The basic idea behind the following two derivations
is that particles hitting the thermalizing wall at a point
P (see Fig. 3) come from an anisotropic nonequilibrium
environment while the particles emerging from P come
from an equilibrium isotropic distribution. It is under-
standable then that some fluxes do not necessarily cancel
and, in particular, we are able to quantify the net velocity
field at the thermalizing walls.

Nonequilibrium interpretation. The velocity distribu-
tion function near a point P of the thermalizing wall
(Fig. 3) has two contributions: (a) one from the parti-
cles that come towards P from a nonequilibrium veloc-
ity distribution and (b) the other one from the outgoing
particles that come from the thermal bath at P. The
nonequilibrium distribution function for a system under
a heat flux adapted from [12] to the case of a two dimen-
sional system is

2
fneq=(1+2p£T[%_2] 66) feq» (2)

where feq is the usual Maxwellian distribution. Then the

T
T-8T
q ¢ T
T+8T
Ty

FIG. 3. Contributions to the mass flux from different direc-
tions. Particles come from regions at different temperatures
and emerge with velocities from an isotropic distribution at
temperature 7.
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velocity distribution near the right wall is

=,

Using this distribution the z-z component of the stress
exerted by the fluid against the wall (0, = mn{vyv,)s)

is
q [2m

= — _— 4

Ogz s\ =T ( )

Then the force per unit length exerted by the wall on
the fluid is, by the action-reaction principle, the negative
of the previous expression and hence it points antipar-
allel to the heat flur. The velocity near the wall can be
estimated using Newton’s law (0, = 17dv,/0x where 7
is the shear viscosity) and the assumption that this ve-
locity decays at distances comparable with the mean free
path £ and it is

v, >0
v, < 0. (3)

Loy,
l

(5)

Vy, =

Replacing the expressions for the shear viscosity n =
J

P

1 1
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%\/T/w , the mean free path £ = 2‘/1% and using the
equation of state for an ideal gas yields

lg
vi= g, (6)
Kinetic interpretation. Let us consider the mass flux
balance at an arbitrary point P of the wall as shown in
Fig. 3. The mass flux coming from an angle between ¢
and ¢ + d¢ with respect to the normal to the wall and
reaching P is

dy= mn\/'ga(qﬁ)(cos ¢, —sing) do , (7

where n and T are the number density and temperature
at the points where the particles come from, whereas a(¢)
is a geometrical factor depending on the incident angle.
We do not give a value for a(¢) since it is well known
that the mean free path theory of transport is too simple
to produce the correct numerical factor [13]. Since the
number density is small then p =nT.

The combined inward mass flux from the directions ¢
and —¢ to P is then

dJin(6) = Vmpa(9) [COS(¢) (

The combined outward mass flux from directions ¢ and

—¢ can only be in the Z direction since the flux comes
from the local equilibrium distribution at the wall and it

L cos(¢) Zdg. The density n in

is dJout(P) = —mn /33
dJout cannot be replaced by p/T because the equation of
state is not valid at wall points. This number density is
unknown and can be determined imposing null net mass
flux in the ¥ direction.

The total flux in the 2 direction is

L[ . ¢ drT
7o - - oA p
J-Z= A (dJin + d]out) 2= A\/m W Ez— (8)

with
/2
A= in? ¢d,
A a(¢) sin® pdo

and where we have set T'(¢) = T + £sin(¢) dT/dz with £
the mean free path. It must be remarked that from the
previous expression the velocity field near the wall can
be estimated dividing this flux by the mass density and
it reduces to

' ¢ dT
v, = const X (T E) Vth , (9)

where v, is the thermal velocity. The previous result
implies that a mass flux parallel to the temperature gra-

dient is induced near the wall and it is proportional to the

adimensional Knudsen number % % which is a measure

% — sin ! — ! z .
JT@ ¢T(—¢)) &~ sin() (\/Tw) ¢T(—¢)> ]d¢

[

of how far from local thermal equilibrium the system is
at a given point.

Using the Fourier law, the expressions for the mean
free path, the thermal conductivity k = 2,/T /7, and the
equation of state for an ideal gas v, becomes

v, — A mq
=7 a4V 2p-

This result predicts the same behavior as (6). The
velocity is independent of the point P—due to the ab-
sence of external forces and energy sources, p and g are
uniform—as it can be appreciated in Fig. 1. Our pre-
dicted value for v, from our observations of ¢ and p is

(10)

v, = —0.016 &+ 0.003 (predicted) , (11)

which should be compared with (1) and v, = —0.020 &+
0.001 for the simulation with ng = 0.01, N = 8100,
Ty, = 1.0, and T; = 0.01.

The extension to three dimensions is straightforward
giving essentially the same result indicating that this con-
vective motion could be observed in gases. For example,
using gaseous helium at atmospheric pressure with a tem-
perature gradient of VT = 100 K/cm the velocity near
the wall that we are predicting is v, = 3.8 mm/s. It may
be somewhat smaller because in a real experiment the
average flux coming out from every point at the thermal-
izing wall is not totally isotropic.

Regarding the heat flux ¢ there has been an interesting
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recent proposal applicable to the case of systems under a
heat flux saying that one should observe a departure from
the standard Fourier law [14] (which actually motivated
our series of simulations). What we observe (see Fig. 4)
is that the energy flux is consistent with the Fourier law
plus the kinetic flux ;(mnv?¥) of an ideal gas. The
effect predicted in [14] for our system is about an order
of magnitude smaller than the total flux and since fluxes
are noisier than densities we cannot yet see if such an
effect exists.

In summary, we have observed and quantified the
macroscopic BC for a case of thermal slip and have seen
how it arises from nonlocal effects due to the presence
of nonequilibrium distributions, which implies free ther-
mal convection. The velocity by the wall (proportional
to £VT/T) coincides with that observed in our MD sim-
ulations.
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FIG. 4. Energy flux measured in the same simulation as in
previous figures. The z component has been amplified four
times to show how it is distorted by the convective current.
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